Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Clin Infect Dis ; 75(8): 1297-1306, 2022 Oct 12.
Article in English | MEDLINE | ID: covidwho-1764554

ABSTRACT

BACKGROUND: High rates of tuberculosis (TB) transmission occur in hospitals in high-incidence countries, yet there is no validated way to evaluate the impact of hospital design and function on airborne infection risk. We hypothesized that personal ambient carbon dioxide (CO2) monitoring could serve as a surrogate measure of rebreathed air exposure associated with TB infection risk in health workers (HWs). METHODS: We analyzed baseline and repeat (12-month) interferon-γ release assay (IGRA) results in 138 HWs in Cape Town, South Africa. A random subset of HWs with a baseline negative QuantiFERON Plus (QFT-Plus) underwent personal ambient CO2 monitoring. RESULTS: Annual incidence of TB infection (IGRA conversion) was high (34%). Junior doctors were less likely to have a positive baseline IGRA than other HWs (OR, 0.26; P = .005) but had similar IGRA conversion risk. IGRA converters experienced higher median CO2 levels compared to IGRA nonconverters using quantitative QFT-Plus thresholds of ≥0.35 IU/mL (P < .02) or ≥1 IU/mL (P < .01). Median CO2 levels were predictive of IGRA conversion (odds ratio [OR], 2.04; P = .04, ≥1 IU/mL threshold). Ordinal logistic regression demonstrated that the odds of a higher repeat quantitative IGRA result increased by almost 2-fold (OR, 1.81; P = .01) per 100 ppm unit increase in median CO2 levels, suggesting a dose-dependent response. CONCLUSIONS: HWs face high occupational TB risk. Increasing median CO2 levels (indicative of poor ventilation and/or high occupancy) were associated with higher likelihood of HW TB infection. Personal ambient CO2 monitoring may help target interventions to decrease TB transmission in healthcare facilities and help HWs self-monitor occupational risk, with implications for other airborne infections including coronavirus disease 2019.


Subject(s)
COVID-19 , Infections , Latent Tuberculosis , Tuberculosis , Carbon Dioxide , Disease Susceptibility , Humans , Incidence , Interferon-gamma Release Tests/methods , Latent Tuberculosis/epidemiology , South Africa/epidemiology , Tuberculin Test , Tuberculosis/diagnosis , Tuberculosis/epidemiology
2.
BMC Med ; 20(1): 32, 2022 01 25.
Article in English | MEDLINE | ID: covidwho-1648989

ABSTRACT

BACKGROUND: Protection from severe disease and hospitalization by SARS-CoV-2 vaccination has been amply demonstrated by real-world data. However, the rapidly evolving pandemic raises new concerns. One pertains efficacy of adenoviral vector-based vaccines, particularly the single-dose Ad26.COV2.S, relative to mRNA vaccines. MAIN BODY: We investigated the immunogenicity of Ad26.COV2.S and mRNA vaccines in 33 subjects vaccinated with either vaccine class 5 months earlier on average. After controlling for the time since vaccination, Spike-binding antibody and neutralizing antibody levels were higher in the mRNA-vaccinated subjects, while no significant differences in antigen-specific B cell and T cell responses were observed between the two groups. CONCLUSIONS: A dichotomy exists between the humoral and cellular responses elicited by the two vaccine classes. Testing only for humoral responses to compare the durability of SARS-CoV-2 vaccine-induced responses, as typically performed for public health and research purposes, is insufficient.


Subject(s)
COVID-19 Vaccines , COVID-19 , Ad26COVS1 , Antibodies, Viral , Humans , Immunity, Humoral , RNA, Messenger/genetics , SARS-CoV-2 , Vaccination , mRNA Vaccines
SELECTION OF CITATIONS
SEARCH DETAIL